61 research outputs found

    Decoding an olfactory mechanism of kin recognition and inbreeding avoidance in a primate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Like other vertebrates, primates recognize their relatives, primarily to minimize inbreeding, but also to facilitate nepotism. Although associative, social learning is typically credited for discrimination of familiar kin, discrimination of unfamiliar kin remains unexplained. As sex-biased dispersal in long-lived species cannot consistently prevent encounters between unfamiliar kin, inbreeding remains a threat and mechanisms to avoid it beg explanation. Using a molecular approach that combined analyses of biochemical and microsatellite markers in 17 female and 19 male ring-tailed lemurs (<it>Lemur catta</it>), we describe odor-gene covariance to establish the feasibility of olfactory-mediated kin recognition.</p> <p>Results</p> <p>Despite derivation from different genital glands, labial and scrotal secretions shared about 170 of their respective 338 and 203 semiochemicals. In addition, these semiochemicals encoded information about genetic relatedness within and between the sexes. Although the sexes showed opposite seasonal patterns in signal complexity, the odor profiles of related individuals (whether same-sex or mixed-sex dyads) converged most strongly in the competitive breeding season. Thus, a strong, mutual olfactory signal of genetic relatedness appeared specifically when such information would be crucial for preventing inbreeding. That weaker signals of genetic relatedness might exist year round could provide a mechanism to explain nepotism between unfamiliar kin.</p> <p>Conclusion</p> <p>We suggest that signal convergence between the sexes may reflect strong selective pressures on kin recognition, whereas signal convergence within the sexes may arise as its by-product or function independently to prevent competition between unfamiliar relatives. The link between an individual's genome and its olfactory signals could be mediated by biosynthetic pathways producing polymorphic semiochemicals or by carrier proteins modifying the individual bouquet of olfactory cues. In conclusion, we unveil a possible olfactory mechanism of kin recognition that has specific relevance to understanding inbreeding avoidance and nepotistic behavior observed in free-ranging primates, and broader relevance to understanding the mechanisms of vertebrate olfactory communication.</p

    Exceptional endocrine profiles characterise the meerkat: sex, status, and reproductive patterns.

    Get PDF
    In vertebrates, reproductive endocrine concentrations are strongly differentiated by sex, with androgen biases typifying males and estrogen biases typifying females. These sex differences can be reduced in female-dominant species; however, even the most masculinised of females have less testosterone (T) than do conspecific males. To test if aggressively dominant, female meerkats (Suricata suricatta) may be hormonally masculinised, we measured serum androstenedione (A4), T and estradiol (E2) in both sexes and social classes, during both 'baseline' and reproductive events. Relative to resident males, dominant females had greater A4, equivalent T and greater E2 concentrations. Males, whose endocrine values did not vary by social status, experienced increased T during reproductive forays, linking T to sexual behaviour, but not social status. Moreover, substantial E2 concentrations in male meerkats may facilitate their role as helpers. In females, dominance status and pregnancy magnified the unusual concentrations of measured sex steroids. Lastly, faecal androgen metabolites replicated the findings derived from serum, highlighting the female bias in total androgens. Female meerkats are thus strongly hormonally masculinised, possibly via A4's bioavailability for conversion to T. These raised androgen concentrations may explain female aggressiveness in this species and give dominant breeders a heritable mechanism for their daughters' competitive edge

    Beyond aggression: Androgen-receptor blockade modulates social interaction in wild meerkats

    Get PDF
    In male vertebrates, androgens are inextricably linked to reproduction, social dominance, and aggression, often at the cost of paternal investment or prosociality. Testosterone is invoked to explain rank-related reproductive differences, but its role within a status class, particularly among subordinates, is underappreciated. Recent evidence, especially for monogamous and cooperatively breeding species, suggests broader androgenic mediation of adult social interaction. We explored the actions of androgens in subordinate, male members of a cooperatively breeding species, the meerkat (Suricata suricatta). Although male meerkats show no rank-related testosterone differences, subordinate helpers rarely reproduce. We blocked androgen receptors, in the field, by treating subordinate males with the antiandrogen, flutamide. We monitored androgen concentrations (via baseline serum and time-sequential fecal sampling) and recorded behavior within their groups (via focal observation). Relative to controls, flutamide-treated animals initiated less and received more high-intensity aggression (biting, threatening, feeding competition), engaged in more prosocial behavior (social sniffing, grooming, huddling), and less frequently initiated play or assumed a ‘dominant’ role during play, revealing significant androgenic effects across a broad range of social behavior. By contrast, guarding or vigilance and measures of olfactory and vocal communication in subordinate males appeared unaffected by flutamide treatment. Thus, androgens in male meerkat helpers are aligned with the traditional trade-off between promoting reproductive and aggressive behavior at a cost to affiliation. Our findings, based on rare endocrine manipulation in wild mammals, show a more pervasive role for androgens in adult social behavior than is often recognized, with possible relevance for understanding tradeoffs in cooperative systems

    An intergenerational androgenic mechanism of female intrasexual competition in the cooperatively breeding meerkat.

    Get PDF
    Female intrasexual competition can be intense in cooperatively breeding species, with some dominant breeders (matriarchs) limiting reproduction in subordinates via aggression, eviction or infanticide. In males, such tendencies bidirectionally link to testosterone, but in females, there has been little systematic investigation of androgen-mediated behaviour within and across generations. In 22 clans of wild meerkats (Suricata suricatta), we show that matriarchs 1) express peak androgen concentrations during late gestation, 2) when displaying peak feeding competition, dominance behaviour, and evictions, and 3) relative to subordinates, produce offspring that are more aggressive in early development. Late-gestation antiandrogen treatment of matriarchs 4) specifically reduces dominance behaviour, is associated with infrequent evictions, decreases social centrality within the clan, 5) increases aggression in cohabiting subordinate dams, and 6) reduces offspring aggression. These effects implicate androgen-mediated aggression in the operation of female sexual selection, and intergenerational transmission of masculinised phenotypes in the evolution of meerkat cooperative breeding

    Data from: Baby on board: olfactory cues indicate pregnancy and fetal sex in a non-human primate

    No full text
    Olfactory cues play an integral, albeit underappreciated, role in mediating vertebrate social and reproductive behaviour. These cues fluctuate with the signaller's hormonal condition, coincident with and informative about relevant aspects of its reproductive state, such as pubertal onset, change in season and, in females, timing of ovulation. Although pregnancy dramatically alters a female's endocrine profiles, which can be further influenced by fetal sex, the relationship between gestation and olfactory cues is poorly understood. We therefore examined the effects of pregnancy and fetal sex on volatile genital secretions in the ring-tailed lemur (Lemur catta), a strepsirrhine primate possessing complex olfactory mechanisms of reproductive signalling. While pregnant, dams altered and dampened their expression of volatile chemicals, with compound richness being particularly reduced in dams bearing sons. These changes were comparable in magnitude with other, published chemical differences among lemurs that are salient to conspecifics. Such olfactory ‘signatures’ of pregnancy may help guide social interactions, potentially promoting mother–infant recognition, reducing intragroup conflict or counteracting behavioural mechanisms of paternity confusion; cues that also advertise fetal sex may additionally facilitate differential sex allocation

    GCMS Files

    No full text
    GCMS files generated using Shimadzu QP2010 GC/MS. Files are compressed in RAR format. 'PC' corresponds to preconceptive; 'Preg' corresponds to pregnant

    Victims of infanticide and conspecific bite wounding in a female-dominant primate: a long-term study.

    Get PDF
    The aggression animals receive from conspecifics varies between individuals across their lifetime. As poignantly evidenced by infanticide, for example, aggression can have dramatic fitness consequences. Nevertheless, we understand little about the sources of variation in received aggression, particularly in females. Using a female-dominant species renowned for aggressivity in both sexes, we tested for potential social, demographic, and genetic patterns in the frequency with which animals were wounded by conspecifics. Our study included 243 captive, ring-tailed lemurs (Lemur catta), followed from infancy to adulthood over a 35-year time span. We extracted injury, social, and life-history information from colony records and calculated neutral heterozygosity for a subset of animals, as an estimate of genetic diversity. Focusing on victims rather than aggressors, we used General Linear Models to explain bite-wound patterns at different life stages. In infancy, maternal age best predicted wounds received, as infants born to young mothers were the most frequent infanticide victims. In adulthood, sex best predicted wounds received, as males were three times more likely than females to be seriously injured. No relation emerged between wounds received and the other variables studied. Beyond the generally expected costs of adult male intrasexual aggression, we suggest possible additive costs associated with female-dominant societies - those suffered by young mothers engaged in aggressive disputes and those suffered by adult males aggressively targeted by both sexes. We propose that infanticide in lemurs may be a costly by-product of aggressively mediated, female social dominance. Accordingly, the benefits of female behavioral 'masculinization' accrued to females through priority of access to resources, may be partially offset by early costs in reproductive success. Understanding the factors that influence lifetime patterns of conspecific wounding is critical to evaluating the fitness costs associated with social living; however, these costs may vary substantially between societies

    Chemical richness analyses

    No full text
    This file contains the data and analytical script for analyses relating chemical richness to reproductive condition and fetal sex, compressed in RAR format. Open ChemicalAnalyses.jsl in JMP (SAS Institute) and run the script by clicking "Edit, Run Script"
    • 

    corecore